Search results for "epoxy matrix"
showing 7 items of 7 documents
Quasi-static behaviour and damage assessment of flax/epoxy composites
2015
Experimental investigations were conducted on flax and E-glass fibres reinforced epoxy matrix composites subjected to quasi-static loadings. Flax/epoxy samples having [0]12, [90]12, [0/90]3S and [±45]3S stacking sequences, with a fibre volume fraction of 43% have been tested under tension, compression and in-plane shear loadings. Overall, the compression strength of glass/epoxy was 76% greater than for the flax/epoxy composite. The damage evolution of flax/epoxy of [0/90]3S and [±45]3S samples has been evaluated in terms of transverse crack densities with respect to the load increment. The crack density exhibited a classical “S” shaped pattern for [0/90]3S and linearly for [±45]3S specimens…
Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties
2016
Abstract In the last years, the industrial policies are more attentive to issues concerning sustainability, recycling and environmental care. Therefore, the use of natural fibres in composite materials has spread more and more. This paper deals with flax and basalt fibres within an epoxy matrix by investigating the wettability and the dynamic mechanical properties of the resulting composites, subjected to long-term aging tests in critical environmental conditions. The first laminate was constituted by stacking ten layers of bidirectional flax fabrics. The second one was produced by replacing two external flax layers with two layers of basalt mat, for each side of the laminate. Both laminate…
Incorporation of Silica Nanospherical Particles in Epoxy–Amine Crosslinked Materials II. Dynamic Mechanical Measurements of Epoxy Matrix-Silica Nanoc…
2009
The mechanical strengths of epoxy composites reinforced with silica nanospheres, unfunctionalised or functionalised with either amine or epoxy groups, increase up to a proportion of 5 wt.% of filler, as reflected in a study of the shear storage modulus carried out in dynamic mechanical analysis. This improvement is observed in both glassy and rubbery states, moderately affecting the glass transition temperature of the material. From this percentage of strengthening substance the mechanical properties begin to deteriorate, but keeping (up to 10 wt.% of strengthening material), a greater storage modulus in shear than that of the pristine epoxy resin. A trend can be discerned as the percentag…
Properties evolution of flax/epoxy composites under fatigue loading
2014
International audience; The tension-tension fatigue behaviour of flax fibre reinforced epoxy matrix composites have been investigated for specimens having [0]12, [90]12, [0/90]3S and [±45]3S lay-ups. The Probabilized Stress-Number of cycles (P-S-N) curves have been determined for each laminate type. The measured stress and strain data allowed to quantify the evolution of the mechanical properties, i.e. stiffness, damping and permanent strain as a function of imposed cycles. Especially, the stiffening phenomenon of flax reinforcements oriented parallel to the loading direction has been confirmed. However, due to the competition between damage development and the fibre stiffening, the increas…
Development and characterization of a bio-based epoxy matrix for high-grade bio-based composites
2019
This study aims to develop 100% bio-based hemp/epoxy composites for semi-structural and structural applications. The thermal and mechanical performances of a 100% bio-based matrix derived from biomassare evaluated and reveal properties in the same order of magnitude as those obtained for polyepoxides based on DGEBA, that means a glass transition temperature of approximately 150°C and mechanical properties in the order of 120MPa for the maximum stress and 3.2 GPa for the tangent apparent modulus. This natural origin matrix is then used for the manufacture of composites reinforced with hemp rovings. The bending properties of these 100% bio-based materials are equivalent to those determined fo…
Development and characterization of a bio-based epoxy matrix for high-grade bio-based composites
2019
This study aims to develop 100% bio-based hemp/epoxy composites for semi-structural and structural applications. The thermal and mechanical performances of a 100% bio-based matrix derived from biomassare evaluated and reveal properties in the same order of magnitude as those obtained for polyepoxides based on DGEBA, that means a glass transition temperature of approximately 150°C and mechanical properties in the order of 120MPa for the maximum stress and 3.2 GPa for the tangent apparent modulus. This natural origin matrix is then used for the manufacture of composites reinforced with hemp rovings. The bending properties of these 100% bio-based materials are equivalent to those determined fo…
Development of Composites with a Self-Healing Function
2015
This research aimed to realize experimentally the facilevascular self-healing system in epoxy glass fibre reinforced composite. Using flexiblepolytetrafluoroethylene tubes as removable preforms, the channels were embeddedinto both neat epoxy resin and unidirectional glass-fibre reinforced epoxy laminate.Room temperature curable epoxy resin with a surfactant and an amine-basedhardener were the components of the binary healing agent. The specimens oftapered double cantilever beam geometry were subjected to Mode I fracture tests.Fracture of specimens released the healing agent from channels and triggeredself-healing process of the crack. Tested neat epoxy resin specimensdemonstrated recovery o…