Search results for "epoxy matrix"

showing 7 items of 7 documents

Quasi-static behaviour and damage assessment of flax/epoxy composites

2015

Experimental investigations were conducted on flax and E-glass fibres reinforced epoxy matrix composites subjected to quasi-static loadings. Flax/epoxy samples having [0]12, [90]12, [0/90]3S and [±45]3S stacking sequences, with a fibre volume fraction of 43% have been tested under tension, compression and in-plane shear loadings. Overall, the compression strength of glass/epoxy was 76% greater than for the flax/epoxy composite. The damage evolution of flax/epoxy of [0/90]3S and [±45]3S samples has been evaluated in terms of transverse crack densities with respect to the load increment. The crack density exhibited a classical “S” shaped pattern for [0/90]3S and linearly for [±45]3S specimens…

010302 applied physicsMatériaux [Sciences de l'ingénieur]Materials sciencePolymer-matrix compositesComposite numberMechanical properties02 engineering and technologyEpoxy matrixEpoxy021001 nanoscience & nanotechnologyE-glass fibres01 natural sciences[SPI]Engineering Sciences [physics]Compressive strengthDamage mechanicsDamage mechanicsvisual_art0103 physical sciencesVolume fractionvisual_art.visual_art_mediumFlax fibresMécanique: Mécanique des matériaux [Sciences de l'ingénieur]Composite material0210 nano-technologyQuasistatic process
researchProduct

Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties

2016

Abstract In the last years, the industrial policies are more attentive to issues concerning sustainability, recycling and environmental care. Therefore, the use of natural fibres in composite materials has spread more and more. This paper deals with flax and basalt fibres within an epoxy matrix by investigating the wettability and the dynamic mechanical properties of the resulting composites, subjected to long-term aging tests in critical environmental conditions. The first laminate was constituted by stacking ten layers of bidirectional flax fabrics. The second one was produced by replacing two external flax layers with two layers of basalt mat, for each side of the laminate. Both laminate…

Materials science02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringA. Polymer-matrix composites (PMCs)Water uptakeB. Environmental degradationComposite materialA. HybridMechanical EngineeringEpoxy matrixDynamic mechanical analysisPolymerematrix composites (PMCs)021001 nanoscience & nanotechnologyHybrid0104 chemical sciencesEnvironmental degradationA. Hybrid; A. Polymer-matrix composites (PMCs); B. Environmental degradation; B. Wettability; Ceramics and Composites; Mechanics of Materials; Industrial and Manufacturing Engineering; Mechanical EngineeringSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiMechanics of MaterialsCeramics and CompositesWettabilityWetting0210 nano-technologyB. Wettability
researchProduct

Incorporation of Silica Nanospherical Particles in Epoxy–Amine Crosslinked Materials II. Dynamic Mechanical Measurements of Epoxy Matrix-Silica Nanoc…

2009

The mechanical strengths of epoxy composites reinforced with silica nanospheres, unfunctionalised or functionalised with either amine or epoxy groups, increase up to a proportion of 5 wt.% of filler, as reflected in a study of the shear storage modulus carried out in dynamic mechanical analysis. This improvement is observed in both glassy and rubbery states, moderately affecting the glass transition temperature of the material. From this percentage of strengthening substance the mechanical properties begin to deteriorate, but keeping (up to 10 wt.% of strengthening material), a greater storage modulus in shear than that of the pristine epoxy resin. A trend can be discerned as the percentag…

NanocompositeMaterials sciencePolymers and PlasticsDynamic mechanical analysisEpoxyEpoxy matrixengineering.materialShear (sheet metal)Filler (materials)visual_artMaterials ChemistryCeramics and Compositesengineeringvisual_art.visual_art_mediumAmine gas treatingComposite materialGlass transitionPolymers and Polymer Composites
researchProduct

Properties evolution of flax/epoxy composites under fatigue loading

2014

International audience; The tension-tension fatigue behaviour of flax fibre reinforced epoxy matrix composites have been investigated for specimens having [0]12, [90]12, [0/90]3S and [±45]3S lay-ups. The Probabilized Stress-Number of cycles (P-S-N) curves have been determined for each laminate type. The measured stress and strain data allowed to quantify the evolution of the mechanical properties, i.e. stiffness, damping and permanent strain as a function of imposed cycles. Especially, the stiffening phenomenon of flax reinforcements oriented parallel to the loading direction has been confirmed. However, due to the competition between damage development and the fibre stiffening, the increas…

Polymer-matrix composites (PMCs)Matériaux [Sciences de l'ingénieur]Materials scienceFlax fibresPolymer–matrix composites (PMCs)FatigueDamage mechanics[ SPI.MAT ] Engineering Sciences [physics]/MaterialsModulusIndustrial and Manufacturing Engineering[SPI.MAT]Engineering Sciences [physics]/Materials[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph][SPI]Engineering Sciences [physics]Damage mechanicsDamage mechanics[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]medicineGeneral Materials ScienceMécanique: Mécanique des matériaux [Sciences de l'ingénieur]Composite materialFatigueMechanical EngineeringStress–strain curveStiffnessEpoxy matrixEpoxyStiffeningMechanics of MaterialsModeling and Simulationvisual_art[ SPI.MECA.MEMA ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph][ PHYS.MECA.MEMA ] Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Fatigue loadingvisual_art.visual_art_mediumFlax fibresmedicine.symptomPolymer–matrix composites (PMCs)
researchProduct

Development and characterization of a bio-based epoxy matrix for high-grade bio-based composites

2019

This study aims to develop 100% bio-based hemp/epoxy composites for semi-structural and structural applications. The thermal and mechanical performances of a 100% bio-based matrix derived from biomassare evaluated and reveal properties in the same order of magnitude as those obtained for polyepoxides based on DGEBA, that means a glass transition temperature of approximately 150°C and mechanical properties in the order of 120MPa for the maximum stress and 3.2 GPa for the tangent apparent modulus. This natural origin matrix is then used for the manufacture of composites reinforced with hemp rovings. The bending properties of these 100% bio-based materials are equivalent to those determined fo…

[CHIM.MATE] Chemical Sciences/Material chemistry100% bio-based compositeepoxy matrix[SPI] Engineering Sciences [physics]fibres de chanvre[CHIM.MATE]Chemical Sciences/Material chemistry[SPI.MECA.MSMECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph][SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]mechanical properties[SPI.MECA] Engineering Sciences [physics]/Mechanics [physics.med-ph][SPI]Engineering Sciences [physics]hemp fibresmatrice époxydique[CHIM] Chemical SciencesComposite 100% bio-sourcé[CHIM]Chemical Sciences[SPI.MECA.MSMECA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph]propriétés mécaniques
researchProduct

Development and characterization of a bio-based epoxy matrix for high-grade bio-based composites

2019

This study aims to develop 100% bio-based hemp/epoxy composites for semi-structural and structural applications. The thermal and mechanical performances of a 100% bio-based matrix derived from biomassare evaluated and reveal properties in the same order of magnitude as those obtained for polyepoxides based on DGEBA, that means a glass transition temperature of approximately 150°C and mechanical properties in the order of 120MPa for the maximum stress and 3.2 GPa for the tangent apparent modulus. This natural origin matrix is then used for the manufacture of composites reinforced with hemp rovings. The bending properties of these 100% bio-based materials are equivalent to those determined fo…

[CHIM.MATE] Chemical Sciences/Material chemistry100% bio-based compositeepoxy matrix[SPI] Engineering Sciences [physics]fibres de chanvre[CHIM.MATE]Chemical Sciences/Material chemistry[SPI.MECA]Engineering Sciences [physics]/Mechanics [physics.med-ph]mechanical properties[SPI.MECA] Engineering Sciences [physics]/Mechanics [physics.med-ph][SPI]Engineering Sciences [physics]hemp fibresmatrice époxydique[CHIM] Chemical SciencesComposite 100% bio-sourcé[CHIM]Chemical Sciencespropriétés mécaniques[SPI.MECA.MSMECA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph]
researchProduct

Development of Composites with a Self-Healing Function

2015

This research aimed to realize experimentally the facilevascular self-healing system in epoxy glass fibre reinforced composite. Using flexiblepolytetrafluoroethylene tubes as removable preforms, the channels were embeddedinto both neat epoxy resin and unidirectional glass-fibre reinforced epoxy laminate.Room temperature curable epoxy resin with a surfactant and an amine-basedhardener were the components of the binary healing agent. The specimens oftapered double cantilever beam geometry were subjected to Mode I fracture tests.Fracture of specimens released the healing agent from channels and triggeredself-healing process of the crack. Tested neat epoxy resin specimensdemonstrated recovery o…

lcsh:TN1-997Materials scienceCantileverepoxy matrixvascular approachComposite numberGlass fiberEpoxyBendingsmart compositesFracture toughnessFlexural strengthvisual_artvisual_art.visual_art_mediumself-healingGeneral Materials ScienceComposite materialElastic moduluslcsh:Mining engineering. MetallurgyMaterials Science
researchProduct